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Motivation – Interplanetary Exploration 

Longmier [U. of  Michigan] INSPIRE   [JPL] 

MARCo  [JPL] Swirl  
[ASU/JPL/APL/Busek/Kinetix] 

LunaH-Map  
[ASU/JPL/RMD/Busek/Kinetix] 



Planetary Surface Exploration/Prospecting 

[Dubowsky et al., 2006; Thangavelautham et al.,  2008] 



Need for a Sustainable Propulsion System 

l  High or good-enough delta V 
l  Long storage life, minimal thermal footprint 
l  High thrust – particularly for capture burns. 

l  Low-storage risk, safety 
l  Propellants that are compatible with ISRU methods 
l  Ease of refueling 
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Water Steam vs. Water Electrolysis 

l  We are pursuing both approaches. 
l  Focus here will be water steam and we will compare 

against water electrolysis 
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Water Steam Propulsion 

l  Properties of steam well understood 
n  Minimal storage risk 

l  Isp up to 200 s 

n  Generated from super heated steam, +1500 C 
l  Use of carbon nanoparticles to heat the water using 

solar thermal concentrator. 

n  Free power sources, up to 99 % of sunlight can be 
converted to heat. 
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Steam Propulsion 

l  Achieve high temperatures with low-fidelity 
concentrator 

l  Compact, solid-state heating platform 
l  Comparably high thrust force compared to electrical 

propulsion methods. 
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Steam Propulsion 

l  Comparable in Isp to mono-props 
l  Compatible with ISRU methods to extract water 

from Deimos/Phobos, asteroids, Moon. 

l  Probably not a solution for Mars 
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Steam Propulsion 

l  Steam propulsion is not a new concept. 
l  Old concepts required fission reactors, were meant 

to be large tug-boats of cis-lunar space. 
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Steam Generation Using Carbon Nanoparticles 

l  Concentrated light absorbed due to sub-wavelength 
geometry. 

l  Particles resonate, collect and transfer energy as 
heat. 
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Source: “Solar Vapor Generation Enabled by Nanoparticles  Halas, et al.   2013 



Steam Generation Using Carbon Nanoparticles 

l  Carbon Black N115,  82-86 % absorptivity 
l  Vanta Black, 99.5 % absorptivity 
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Carbon Black N115 Vanta Black 



Steam Generation Using Carbon Nanoparticles 

l  These nanoparticles may naturally occur on 
asteroids. 

l  Heating occurs an molecular scale.  Very precise 
and local. 

l  Some of this maybe a challenge for in space-
propulsion. 
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Laboratory Experiments 



Initial Tests 



Concentrator Test Results 
l  Time for wood to catch fire: ~5-7 seconds 
l  Time for 15 ml of distilled water to boil:  10 minutes got upto 

100ºC   
l  Steam was evident ~5.5min 



Early Results with Carbon Nanoparticles 
l  Radiation – Need for radiation hardened electronics 
l  Attitude control  - Reaction wheels and other 

attitude control techniques needed 

l  Propulsion – Cold gas, electrospray, solar kites, 
sublimates 

l  Communications – S-band with inflatable antenna 
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Condition Time to Boil Deviation 

Distill Water 600 sec 10 % 

Distill Water + 
Nanoparticles 

40 sec 15 % 

l  Solar to heat conversion efficiency: 82 % 

l  Up to 15x shorter time to boil. 
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Early Results with Carbon Nanoparticles 



Solar Thermal Steam Propulsion Concept 

Components Mass (kg) Volume  (L) 

Propellant 7  7  

Propulsion Dry Mass 3 1 

Comms & ACDS 2 1 

Structure 1 0.5 

Power 1 0.5 
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l  Aggressive, optimized design. 
l  Delta V = 1400 m/s vs. 2500 m/s for Photovoltaic 

Electrolysis. 



Solar Thermal Spacecraft Concept 
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Solar Thermal Spacecraft Concept 



Inflatables 

l  Few grams of solid powder inflates parabolic 
antenna, UV resin cures inflatable into shape. 

l  Further enhancements can pave the way for a solar 
thermal concentrator 
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1 2 3 

[Babuscia, Chandra, Thangavelautham 2016] 



PV Electrolysis Spacecraft Concept 



System Performance 

l  For short pulses  
     Isp = 360s 
l  For a 6U CubeSat 

n  Total Mass – 14 kg 
n  Dry Mass – 4.5 kg 
n  ∆V = 4000 m/s 
 

To Required 
∆V  

Low Lunar 
Orbit 

4040 m/s 

EML – 1 3770 m/s 

EML - 2 3430 m/s 

Sutton, George P., and Oscar Biblarz. "Thrust Chambers." Rocket Propulsion Elements. 8th ed. Wiley. 301-305. Print. 



PV Electrolysis Spacecraft Concept 

l  Concept developed based on currently available 
state of the art CubeSat components 

l  PEM Electrolyzer with 85-90 % conversion 
efficiency 

l  Dual-body design, lower stage is centrifuge to 
separate water from the propellants. 
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System Operation 

Lower segment rotates to separate 
water from reactants 

Side View of  
PVEPS 



General Case & Electrolysis Comparison 
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Discussion 

l  Overall, solar-thermal steam propulsion system is 
simpler, but at the cost of reduced performance  

l  Well aligned with a water-based cis-lunar economy 
concept. 

l  Water can be with impurities, particularly sulfur, 
carbon monoxide 

l  Easier adoption, until advancements make 
electrolysis options more practical. 
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SpaceTREx Capabilities 

l  Design, Build 
l  Test 
l  Fly 

 

Design, Build, Test, Fly… 
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SpaceTREx Team 

l  Design, Build 
l  Test 
l  Fly 

 

Scientist Explorer + 



Current Space Missions 

AOSAT I SWIMSat SunCube FemtoSats 




